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Abstract. The basis of a representation space of any group may be chosen according to 
its decomposition into irreducible representations of the group and a subgroup chain. 
Coupling, recoupling, subduction and resubduction factors are each shown to arise as a 
result of Schur’s lemmas and a particular groupsubgroup structure. When induction and 
Mackey’s subgroup theorem are considered new transformation factors occur, those of 
induction and reinduction. Key properties of these factors are given, together with their 
relationship with double coset matrix elements. 

1. Introduction 

From the works of Schur, Frobenius and Weyl we have a number of theorems 
connecting the character theory of the symmetric and the unitary groups. This connec- 
tion, which we call the Schur-Weyl duality, is made quite apparent through the use 
of Schur functions (Littlewood 1940). But the duality goes further in that many 
powerful equations can be established which connect various transformation coefficients 
of the symmetric groups and the unitary groups. 

In later papers we shall continue other authors’ recent extensions of the Schur-Weyl 
duality. For this purpose we require some new results in the theory of transformation 
coefficients for arbitrary compact groups, particularly in the area of induced representa- 
tions. In this paper we derive these theorems. In so doing we present in P 2 a new 
perspective on coupling (or isoscalar) factors, recoupling coefficients, and Kramer’s 6f 
symbols, showing that they are all specialised transformation factors. Section 3 intro- 
duces some double coset bases. Section 4 reviews the process of inducing from subgroup 
to group and introduces the induction coefficient. Two other types of transformation 
factors involving induced representations are given in 00 5 and 6 .  Their relationships 
to the induction coefficient are also given. 

2. Remarks on transformation coefficients 

For our purposes we take a representation r of a (finite or compact continuous) group 
G as a unitary vector space called a representation space V, of finite dimension Irl 
together with a set of unitary linear operators 0; which map V into itself 

0; :  VI.+ v,- V g e  G (2.1) 
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48 R W Haase and P H Butler 

and which obey the group properties. Because we restrict ourselves to finite- 
dimensional unitary spaces, $§ 4, 5 and 6 are restricted to induction of finite groups. 
A reducible representation space is one which contains a proper subspace that is 
invariant under the action of the group operators. An irreducible representation space 
(or irrep space) of a group G is a representation space which is not reducible. An 
irrep space is thus a minimal invariant subspace of a representation space. The action 
of the group G on any representation space Vr leads to the decomposition into irrep 
spaces. We write 

(2.2) Vr= V,-,O Vr,,O.. . . 
Furthermore, from Schur’s lemma 1, two different irrep spaces Vr, and VrYs in Vr 
are said to be equivalent if there exists an invertible linear operator A :  Vr7+ Vr,,, 
such that OLY’A = AOiY. Equivalent irreps may be labelled with the same irrep label 
y. An extra label z must then be included to distinguish the different equivalent irreps. 
We call r and z parentage labels. We reserve lower case Greek letters for irrep labels. 
The decomposition of Vr in (2.2) may be rewritten as 

(2.3) 

where the sum is over z and y. 
A basis of the irrep space Vrry is given as the set 

{ I T ( G ) z y ( G ) i ) :  i = l , . .  . , / y / }  (2.4) 

where IyI is the dimension of Vr,,. The group label G is included as a means to 
distinguish in later sections representation spaces of isomorphic groups. For this section 
we shall omit the ( G ) ,  writing I T ( G ) z y ( G ) i )  as ITzyi). The bases of all irrep spaces 
are chosen to be orthonormal. The action of all group operators on this basis set 
determines an irreducible matrix representation (matrix irrep): 

O L J r z y i )  = I r zy i ’ ) ( r zy i ’JOLIrzy i )  (2.5) 

(the summation convention used throughout this paper is to sum on indices (Greek 
or Latin) that occur only once in the bra or raised in a matrix, and only once in a ket 
or lowered in a matrix). We note that for different equivalent irrep spaces Vr,, and 
Vr,,, the irrep matrices in (2.5) may be different even though their characters are 
identical. However, it is always possible to choose the bases of all the different 
equivalent irrep spaces so that the irrep matrices are identical, that is, the irrep matrices 
are independent of both r and z. We write 

(2.6) ( r z ’ y ’ i ’ l o ~ l r z y i )  = a“, a y ’ ,  y ( g ) i ‘ i .  

We call such a basis of V,- a G basis. 

tions of the G basis vectors Irzy i ) ,  
An alternative G basis (we put on ‘hats’) can be formed by taking linear combina- 

p q i j  = Irzyi)(rzyi lr i$) .  (2.7) 

The irreducibility (Schur’s lemma 1) requires that the transformation be diagonal in 
y. In general the two G bases give rise to different irrep matrices. Such bases will be 
called inequiualent G bases. However, if the irrep matrices are identical we term the 
bases equivalent G buses. It is important to note that even though the irrep matrices 
are identical, two equivalent G bases are not necessarily identical. In fact, by Schur’s 
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lemma 2 the transformation in (2.7) between equivalent G bases must be diagonal 
and independent of i, but is otherwise arbitrary: 

(rzyilri j%j =(rzylriy)sY, s i  ;. (2.8) 

Because all our bases are chosen orthonormal, the elements ( T z y l T i y )  are elements 
of a unitary matrix where z and 2 are row and column indexes respectively (see Butler 

Now consider the irrep spaces of G with respect to some subgroup H of G. In 
general the irrep spaces of G are reducible representation spaces of H. If r), 77’ . . . 
label the irreps of H, we write the decomposition of V,,, into irreps as 

1981, pp. 15-8). 

where a = 1 ,2 ,  . . . , I y :  71 is the branching multiplicity label which distinguishes the 
I y :  r)( occurrences of the irrep space labelled by r) in V,,,. A basis of V,,, is given 
by the set of orthonormal vectors 

{IT(G)zy(G)ar)(H)j)~ITzyar)j):a=l, . .  . , I y :d ,  v ( H ) , j = l , . .  . ,lr)lI. (2.10) 

An important special case in which we recover a G basis occurs when H is the identity 
group E with the single irrep O ( E ) .  We have (7: 01 = I y (  and (TzyiOl) = (Tzy i )  where 
i has replaced a. The group operator action on the basis vectors Irzyaqj)  is 

0: I r z y a ~ j )  = I r zya ’ 7 ’ j ’ )  (r z ya ’ 7 ’ j ’  I 0 I r zya vj) for g E G, 

= (rzyaTj’)(rzyavj’ l  o;(rzyaqj) for g E H. (2.11) 

In a similar manner to the definition of a G basis, we define a GH basis as a basis 
which is simultaneously a G basis and an H basis. Note that an H basis is not required 
to be a G basis. For both GH and H bases one has for h E H 

(rz‘y’a’r)’jfloThIrZyar)j)= s y ’ , 6 = ’ ,  s9’, r ) ( h ) J ’ ,  (2.12) 

and for the GH basis with g E G 

( r z y ~1 ’ j r  1 o; 1 r zyaqj )  = s 6 ,’ , ( g ) a ’ ’ 9,. (2.13) 

Two GH bases are said to be equivalent GH bases if they give rise to identical irrep 
matrices for both G and H (namely y ( g ) = ? ( g ) ) ;  otherwise they are said to be 
inequivalent GH bases. 

In the remainder of this section, we ignore transformations in the parentage label 
of G bases or GH bases expressed by (2.7). Instead, we look at the properties of the 
transformation between inequivalent GH bases but equivalent H bases. The transfor- 
mation may be written 

(2.14) 

Irreducibility (Schur’s lemma 1 applied to both G and H )  foces ? = y and i j  = r), 
and the fact that we are transforming between equivalent H bases (Schur’s lemma 2 
applies to H )  forces I=j and independence of j .  Hence 

(2.15) 
See Bickerstaff (1980). Thus for such a transformation the irrep matrix elements of 
(2.12) are changed to 

(2.16) 

A A A ?  

lrz?%.h = IrzYar)j)(~ar)jlyar)/) .  

A A A ?  

(rar)~lrarll)=(yar)lya^7)) s y ,  Y V i  8’;. 

67, = ( Y Q  7) I Y U  ’ 7) 7 Y (g)  =’”” av,( ya VI Y J r ) )  for g E G, y ( g )  6’9’1,  
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but the transformation leaves invariant the elements ~ ( h ) " ~  The property (2.15) of 
this transformation is of great importance in the study of the Racah-Wigner algebra. 
We call the associated transformation coefficient a GH transformation factor to 
emphasise its independence from the subgroup basis labels and the parentage labels 
of the group. With each such factored transformation, we associate the diagram of 
figure 1. The alternative routes correspond to different GH basis vectors which have 

Figure 1. 

the same H basis. The transformation factor (ybT1 yaT) is the archetype of a class of 
transformation factors for any two groupsubgroup schemes with common group and 
subgroup. For example, the G H  transformation factor for the scheme of figure 2 is 
what we shall call the coupling factor and denote as 

(2.17) 

I (GI X v i l  x N t  

Figure 2. 

We observe that if L and N are the identity group E then (2.17) reduces to a coupling 
coefficient 

(2.18) 
where a, a, and a2 are replaced by i ,  k and m respectively. The special branchings 
K X M = G and L X N = H, where K and M are isomorphic to G, and where L and 
N are isomorphic to H, are termed couplings in the literature on the Racah-Wigner 
algebra, and hence our use of the terms coupling factor and coupling coefficient. 

( ~ p b y i O l (  KkO, p m o )  10) = (Kpbyil Kkpm) 
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The scheme of figure 3 (we have omitted the parentage and subgroup basis labels) 
gives another special transformation factor. This we shall call the recoupling factor 
and denote 

( ( A P L ) ~ ~ ,  v, ~ Y I A ( P J J ) C K ,  d r ) .  (2.19) 

qvlHxN1 A X  I L rK1 

Figure 3. 

These factors can be defined with reference to coupling coefficients of (2.18) 

(( AP ) a77, U, br 1 A ( P v ) CK,  dr ) ( A  Kdyil A k k) ( P ~ C K ~  I Pmvn ) 
= (77vbyi177jvn)(APa77j(AlPm). (2.20) 

If all six groups G, H, K ,  L, M and N are isomorphic, then (2.19) is the recoupling 
coefficient, which is well known in the Racah-Wigner algebra and which is usually 
defined by (2.20). See Butler (1981, equation (3.2.17)). To be consistent with our 
terminology, we call this recoupling coefficient a recoupling factor. 

A further example is the factor associated with figure 4 which we write as 

( rav ( bAP 1 V I  ( ~ P Y ) )  - (2.21) 

Figure 4. 

Kaplan (1962a, b) and Horie (1964) introduced such transformation factors for chains 
of symmetric groups. Kramer (1 967) has analysed and calculated these symmetric 
group factors, which he termed 6f symbols, for all cases without multiplicity. We shall 
use the term resubduction factor for any transformation of the form given by figure 4. 

In analogy with the recoupling factor, the resubduction €actor can be defined by 
four transformation coefficients of the type 

( ra .ri. k I 7 4 .  (2.22) 

These coefficients describe the decomposition of irreps of G according to the g r o u p  
subgroup scheme G 2 H X K.  Such coefficients will be called subduction coefficients. 
They have been discussed by several authors (see Kramer 1967, 1968), especially in 
connection with the symmetric groups. The relationship between the resubduction 



52 R W Haase and P H Butler 

(2.23) 

and may be used to define the resubduction factor. 

tion factor 
To continue the analogy with Racah-Wigner coupling theory, we define the subduc- 

(2.24) 

which describes the transformation between the groupsubgroup schemes given in 
figure 5 .  When H is the identity group, (2.24) reduces to a subduction coefficient 

(2.25) 

( YCK ( a  1 CL 1 A (a* v )  I 4 

( y c ~  ( k O ) h  (l0)l y i o  10) = (yCKkAll y i )  

where a is replaced by i ,  a ,  by k,  and a2 by I. 

Figure 5. 

3. Double coset bases 

This section introduces the double coset decomposition which has been studied exten- 
sively by Sullivan (1980, and references therein). In contrast to § 2 we study bases of 
Vrry for chains involving G and G, = gGg-' for fixed g E G. Clearly, for any subgroup 

M of G, Mg = gMg-' = (gmg-' : m E M }  is isomorphic to M. We write M - M,. The 
case for which g is a double coset representative is of particular interest. 

The set H \ G / K  of double cosets HqK of a group G with respect to two subgroups 
H and K is obtained by writing each element g E G as 

g 

g = W  (3.1) 
where h E H and k E K. The elements q are called double coset representatives (Coleman 
1966, p 21). 

For each q, we have isomorphic subgroups 

L(q)  = H, A K,  L,(q) = qL(q)q-' ,  L,-l(q) = q-'L(q)q.  (3.2) 
A space V,, which is an irrep space of G, is simultaneously an irrep space of G, 

for any g E G. But a G basis is not equivalent to a G, basis because all pairs of matrices 
y ( g ' )  and y(gg'g-') are not equal. Therefore consider transformations between the 
bases represented by the chains G 2 K = L, G 2 H = L,-I, G, 2 H, = L and G, = K, = 
L, as shown in figure 6.  (For simplicity we shorten L ( q )  to L, but note the dependency 
of L on 4.) 
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Figure 6. 

0; takes a GKL basis vector (respectively a GHL,-1 basis vector) into a G,K,L, 
basis vector (respectively a G,H,L basis vector). That is, 

0; Ir(G)cK (K)dA (L)O = Ir(G,)cK(K,)dA (L,) 0,  
O,Yly(G)adH)  bA(Lq-1)0 = IY(Gq)aq(Hq)bA(L)O. (3.4) 

(3.3) 

The overlap between basis vectors of (3.4) and those of the GKL basis defines 
Sullivan’s (1973) double coset matrix elements (DCMES) which clearly have the factorisa- 
tion property 

( y ( G ) a d H )  bA ’&-I) l’I 0; I r ( G )  C K  ( W d A  ( L )  0 
= (r(G,)aa(H,) bA’ ( L )  1’1 r(G)cK ( W d A  ( L )  0 
= ( Y ( G, 1 a a ( Hq 1 bA ( L )  I Y (  G )  CK ( K  1 dA ( L ) )  6 A ‘ A  6 “ I .  (3.5) 

This type of transformation factor has been considered by Reid and Butler (1980, 
1982) in their discussion of different (rotated) point group embeddings such as 0 3 D4 1 
C2 and 0 2 D3 x C 2  (see also Butler 1981, 0 5.3). The resubduction factor of (2.21) 
can be seen as a special case of a DCME for which in (3.5) G, = G, H, = GI2X G3,  
K = G I  X G23, L = G I  x G2 X G3 and the bases chosen such that q = e. It is not until 
Mackey’s subgroup theorem is introduced in 0 6 that we are able to use a powerful 
completeness relation over the series of subgroups L ( q ) .  

4. Bases of induced spaces 

The preceding sections discussed transformations arising from the concept of the 
reduction of an irrep space V,, of a group G into irreps of a subgroup H. A second 
concept is that of induction, in which a representation space of G is obtained from an 
irrep space V,, of a subgroup H. Induction is the tensor product of V,, with the left 
coset space V,,,. Not all physics texts on group theory discuss induced representations, 
but Coleman (1966, 1968) and Bradley and Cracknell (1972) contain all the results 
we need. 

Recall that the space VH, ,  is obtained by associating each coset pH with a vector 
Ip) and that the group action in the space VH,,  is given by the permutation rep- 
resentation : 

O y I P ) = l g P )  (4.1) 
The space is of dimension JH\GJ = lGl/lHl. The induced representation space, VH,& 
V y f i ( ~ )  3 V y ( H ) f G  (or written simply as V Y f i f ) ,  has the basis vectors 

I Y T T P ~ )  = I Y ~ H J ~ ) =  IP)Iya(H)i) (4.2) 
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where 

The basis { I p ) }  of V H i G ,  like the basis { I y ~ j ) } ,  is not unique, but it is important in the 
following that once chosen both bases remain fixed. 

H~ = p ~ p - ' .  

The action of g E G on the induced basis vector Iyq ? p i )  is given as 

Writing gp  as the (appropriate) coset representative po times an element po'gp  of H, 
(4.3) becomes 

O,.'lYVtPj) = 0;J le)ly7Ii> = o;p;:1,pIe)lY7Ii) 

= I Y T  t ~ ' i ' >  ~p',71(p01gp)j ' i*  (4.4) 

Observe that { l y q  t pi ) }  is not a G basis but is a basis of a reducible representation 
space of G of dimension 1711 X lGl/lHl. The transformation into a G basis 

lY7I t Pi) = IY7I t a74 (77 t ayit rl t Pi) (4.5) 

gives rise to matrix elements labelled by the index sets pi  and ayi. We shall call these 
elements induction coefficients. Their factorisation will be given in 0 6. The Frobenius 
reciprocity theorem implies that a = 1 , .  . . , Jy:  711, that is, the number of occurrences 
of y in the induced representation q ( H ) T G  equals the number of occurrences of 
representation v ( H )  in y ( G ) .  

When q ( H )  is the identity irrep O(E) of E, the induced representation O(E) t  G 
is the I GI -dimensional regular representation of G. The reciprocity theorem then 
implies that if y is an irrep of G, the multiplicity of y in O ( E )  t G is equal to the 
multiplicity of O(E) in y ( G ) ,  which is just the dimension IyI of y ( G ) .  Thus it follows 
that I;, Iyl2 = [GI, and (4.5) is a statement of the decomposition of the regular rep- 
resentation of G into irreps. 

5. Reinduction factors 

In this section we define the reinduction factor and show its relationship to the induction 
coefficients. Given the chain G 3 H 3 L the induction of an irrep A(L) into G is 
equivalent to, that is, gives the same space as, the two-step process of inducing first 
into H then into G :  

A(L) 1 G = ( A ( L ) t H )  t G 

( A ( L ) t H ) t  G = ( A w l  fK) f  G, 

(5.1) 

(5 .2 )  

(Coleman 1966, theorem 4). Hence, given the chain G 2 K 3 L, 

the transformation between the bases obtained by (i) induction to the intermediate 
group ( H  or K ) ,  (ii) decomposition to its irreps (71 or K), (iii) further induction to G 
and (iv) decomposition into irreps of G gives rise to the transformation factor (see 
figure 7) 

( A  t b7I t aylh t dK t C Y ) .  (5.3) 
We shall call this factor a reinduction factor. In its definition, we have ignored 

transformations in the parentage label of A ( L )  and have transformed between 
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Fqure 7. 

equivalent G bases. As a notational point observe that the arrows in figure 7 are 
downward, as in the figures of 0 2. This is because the (reducible) representation space 
A(L)TG of G may be written as a direct sum of induced representation spaces of 
either H f G  or KTG, each of which is a direct sum of representation spaces V ,  of G. 

The reinduction factor is unitary over the index sets bva and dKc. As a result of 
the Frobenius reciprocity theorem, the transformation factor (see figure 8) 

( Y( G 1 a v  ( H )  bA ( L )  I Y (  G )  CK (K  1 dA ( L ) )  (5.4) 

is, for fixed y and A, unitary over the same index sets. It is not known if one can make 
phase and multiplicity choices so that for the same labels the two factors are equal. 

Figure 8. 

The reinduction factor can be defined in terms of four induction factors. This is 
shown by giving alternative bases for the induced space A(L)f G and using the fact 
that each element of G can be written g = p1 h = p1 pzl’ = pl’ and g = p3 k = p3p41’ = pl‘ 
where p1e H\G, p 2 e  L\H, p 3 e  K\G, p4e L\K. Thus 

and similarly 

I~tP~)=IAtP3P4~)=/AtP3dKk)(htdKkl~tP4r> 

= ( h t c ~ t d y ‘ i ’ ) ( ~ t d y ’ i ’ ( ~ t ~ ~ k ) ( A t d ~ k l A t p ~ l ) .  (5 .6)  
The overlap of these two equations gives the reinduction factor in terms of four 
induction coefficients: 

( A ?  h t aylh t C K ? .  ~ Y ) ( K  t d y i l ~ t p ~ k ) ( A  tdKkih tp40 

= (7  t Wil7 tPlj)(A t h j l h  tP&. (5.7) 
The analogy with the recoupling factor which is defined with respect to four coupling 
coefficients is the reason for our choice of name reinduction factor. 
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One particular type of reinduction factor which we shall be requiring in later 

( ( A P ) ~ ~ T ,  v , ? b r I A ( ~ v ) f c ~ ,  ?dr)  ( 5 . 8 )  

which by the Frobenius reciprocity theorem has the same unitary properties as the 
resubduction factor of (2.19) and figure 4. This reinduction factor can also be written 
as four induction coefficients (cf (5.7)) 

sections is the factor corresponding to figure 9. This will be written as 

( ( A p ) f a T ,  v, f b r b ( ~ v ) f  CK, f d r ) ( A ~ f d r i ) h ~ f ~ s l k ) ( ~ v f  C K ~ ~ P ~ T P O ~ )  

= (v f by4 T Y  fPl jn)(AP f awl AP T P h ) .  

Observe that each induction coefficient G induces from a direct product subgroup, 
for example in figure 9 L X M is induced into H. 

Figure 9. 

6. The induction factor and Mackey’s subgroup theorem 

We can now form two special bases for the induced representation space V , , ( H ) f G .  
The first is the GK basis labelled as 

where, as before, the Frobenius reciprocity theorem gives the range of U. 

The second basis is obtained by writing each coset representative p of H\G as 
p = rq where q E H\G/K and r E L(q)\K (see Bradley and Cracknell 1972, theorem 
4.7.9,  and choosing the HL,-l(q) basis for the space V,,. By writing the H bases in 
this q-dependent fashion, the basis vectors of 7 ( H )  t G may be written 

{~r)l~(Hq)cA(L)l):rEL\K,I=l,. . . , ] A I }  (6.4) 

for each qcA form an induced space A ( L )  T K for which a K basis may be chosen. By 
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this route we have chosen our second basis for the original q ( H )  t G space. It is 

{I T ( H q ) C A  W q ) )  t d K ( K ) k )  

= 1qTcA T dKk) : q E H\G/K,  C = 1, . . . , IT: AI, A ( L ( q ) ) ,  

d = l , .  . . , I A : K I , K ( K ) ,  k = l , .  . .  , I K I } .  (6.5) 

The overlap between the basis vectors of (6.1) and (6.5) defines a new transforma- 
tion factor (see figure 10) which we shall call the induction factor. 

( T ( H q )  ( U q ) )  ? d~ ( K  )I 77 ( H )  ? ay(G)  b~ ( K ) )  = ( q v A  'T d~ IT  t a y b ~ ) .  (6.6) 

Figure 10. 

It is to be emphasised that the vector 1 q ~ c A  t d K k )  belongs to Vq(Hq)fGq through the 
action of Ozt, which has been absorbed into the vector ( ~ c h t d ~ k )  by (6.3). The 
factor (6.6) is thus unitary on the index sets ayb and cA(L(q) )d ,  where the summation 
includes all possible subgroups L(q) ,  one for each double coset representative q. The 
induction factor thus differs from the transformation factors of the earlier sections in 
that the sum involves groups as well as irreps and multiplicities. 

In the language of Mackey's subgroup theorem (Coleman 1966, theorem 8, Bradley 
and Cracknell 1972, theorem 4.7.6) the induction factor transforms between the 
representations 

and 8 [T(Hq)u4?)1,rK. (6.7) 
q e H \ G I K  

[T(H) tGIJK 

We remark that for the case in which K is the identity group, the induction factor 
is just the induction coefficient defined in (4.4). Here the multiplicity labels b and c 
label respectively a G basis for y ( G )  and an H basis for v ( H ) .  Since p = eq, each 
double coset is a coset of H\G. Also L ( q )  = E  for all q since K 3 L ( q ) .  Thus (6.6) 
is rewritten 

(6.8) 

where we have used (6.2). Comparing this situation with taking H I  = H2 = H = E in 
figure 2, that is, when the coupling factor reduces to a coupling coefficient, the choice 
of name for this transformation factor becomes apparent. 

In an alternative approach to induction theory using basis projection operators 
(Young symmetrisers), Sullivan (1973) has shown that the weighted double coset 
matrix elements (WDCMES) 

(T(H,)CO(E)T 10(E)lT(H)T w ( G ) b O ( E ) )  = (I) Tqclr] T ayb)  

describe the transformation between the above two basis schemes of the induced 
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representation space. The relationship between the WDCME and our induction factor 
involves definite phase and multiplicity choices and is not established here. 

As an example of the above we take the symmetric groups H = S3 X S2,  G = Ss, 
K =S,xS, and the induced space pt=[21]X[2]t. The coset space VHIG, whose 
representaties p are assumed chosen, has dimension ten so that Iptl= 20. The. 
Frobenius reciprocity theorem gives the decomposition of the induced space into G. 
We have 

(6.10) 

where we omit the brackets [ ] around the partition labels. The GK reduction follows 
simply: 

21 X 2(H) t G = 41 + 32 + 312 + 221( G). 

41(G)= (4+31) X 1(K), 

312(G)=(31+212)X 1(K), 221(G)=(22+212)X1(K). (6.11) 

The alternative basis is given by first choosing the double cosets of which there are 

32(G)= (31 + 2 2 )  x l (K) ,  

two. Selecting q1 = ( e )  and q2=(35), the subgroups L(q) of K are respectively 

L ( q l )  = S3 X S1 X So X S1 and (6.12) 

The identity group So is inserted for convenience. The decomposition of 21 X 2(Hq) 
into each L(q) is 

L(q2) = S2 X S2 X S1 X So. 

21 x2(Hq,) = 21 x 1 X O X  l(L(ql))  

and 

21 x 2(Hq,) = 2 x 2 x 1 x O+ l2 x 2 x 1 x 0(L(q2)). (6.13) 

The coset spaces L(q)\K are determined by the choices of double cosets q and 
cosets p,  but here we do not need to specify them. We remark that each V,,,,,, is a 
direct product of two coset spaces since we are performing two inductions, one into 
S4 and the other into S,  . The dimensions of the coset spaces are 

IL(ql)\KI=4Xl and IL(q2)\KJ=6Xl. (6.14) 

The resulting decomposition of each induced space A(L(q)) t K  is again found by 
Note that X q  JL(q)\KI = JH\GI which follows from the decomposition p = rq. 

the Frobenius reciprocity theorem. We have 

21 x 1 x 0 x 1 (L(  q l )  t K )  = (3 1 + 22 + 21 2, x 1 ( K ) ,  

l2 x 2 x 1 x 0(L(q2) t K )  = (31 + 212) x l (K) .  

2 x 2 x 1 x O(L(q2) t K )  = (4 + 31 + 22) x 1(K): (6.15) 

The direct sum of all the irrep spaces of K is just the composition given in (6.11). 

K,  say 31 X 1, and finding the index sets which, in this example, are 
The unitary property of the induction factor is displayed by choosing an irrep of 

(6.16) ( a y b )  = ( 7 )  = (411, (321, (31’) 
and 

(cAd)= ( A )  = ( 2 1  X 1 X O X  l ) ,  ( 2 X 2 X  1 XO), ( 1 2 x 2 x  1 xO), 

since the multiplicities a, b, c, d may be omitted. 
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6. Conclusions 

Our desire to study the Schur-Weyl duality relating the symmetric and unitary groups 
(Haase and Butler 1984) has led us to study transformations between alternative bases 
of induced representations for arbitrary groups. As a preliminary, we have shown that 
the well known 3jm or coupling and 6j  or recoupling factors, and the less well known 
6f or resubduction factor, are all special cases of a general type of basis transformation. 
All transformations have properties which are a consequence of the conditions imposed 
under the name, a GH basis choice. The conditions are the irreducibility of spaces, 
arising from Schur’s lemma 1, and the G bases definition which enables us to use 
Schur’s lemma 2. 

The possible choices of basis for induced representation spaces has not been studied 
often. Keeping within the perspectives of the above transformation theory, we have 
defined the induction coefficient and two new transformation factors, the induction 
factor and the reinduction factor. We have drawn an analogy with coupling theory in 
that similar relationships hold for the transformations of induced spaces as for transfor- 
mations of coupled spaces. The reinduction factor relates two bases of an induced 
space VA(L)t G ,  one basis derived from G 2 H 2 L and the other from G 2 K 2 L. The 
induction factor involves both decomposition and induction via Mackey’s subgroup 
theorem. An important feature is the presence of a sum over a set of special subgroups, 
L ( q )  = qHq-’ n K where q E H\G/K are the double coset representatives. 
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